Evolutionary Ruin And Stochastic Recreate: A Case Study On The Exam Timetabling Problem
نویسندگان
چکیده
This paper presents a new class of intelligent systems, called Evolutionary Ruin and Stochastic Recreate, that can learn and adapt to the changing enviroment. It improves the original Ruin and Recreate principle’s performance by incorporating an Evolutionary Ruin step which implements evolution within a single solution. In the proposed approach, a cycle of Solution Decomposition, Evolutionary Ruin and Stochastic Recreate continues until stopping conditions are reached. The Solution Decomposition step first uses some domain knowledge to break a solution down into its components and assign a score to each. The Evolutionary Ruin step then applies two operators (namely Selection and Mutation) to destroy a certain fraction of the entire solution. After the above steps, an input solution becomes partial and thus the resulting partial solution needs to be repaired. The repair is carried out by using the Stochastic Recreate step to reintroduce the removed items in a specific way (somewhat stochastic in order to have a better chance to jump out of the local optima), and then ask the underlying improvement heuristic whether this move will be accepted. These three steps are executed in sequence until a specific stopping condition is reached. Therefore, optimisation is achieved by solution disruption, iterative improvement and a stochastic constructive repair process performed within. Encouraging experimental results on exam timetabling problems are reported.
منابع مشابه
Search with evolutionary ruin and stochastic rebuild: A theoretic framework and a case study on exam timetabling
This paper presents a new search method, called Evolutionary Ruin and Stochastic Recreate, which tries to learn and adapt to the changing environments during the search process. It improves the performance of the original Ruin and Recreate principle by embedding an additional phase of Evolutionary Ruin to mimic the evolution within single solutions. This method executes a cycle of Solution Deco...
متن کاملAn Evolutionary Approach For The Examination Timetabling Problems
One of the most significant problems in the training centers is presenting an exam timetabling due to enrolled subjects for each student with maximum spread between exams. In this paper, a special mathematical programming model is presented which its purpose is to minimize interference of the time period of each exam for each student. It is too difficult and even impossible to optimally solve t...
متن کاملA discrete-event optimization framework for mixed-speed train timetabling problem
Railway scheduling is a complex task of rail operators that involves the generation of a conflict-free train timetable. This paper presents a discrete-event simulation-based optimization approach for solving the train timetabling problem to minimize total weighted unplanned stop time in a hybrid single and double track railway networks. The designed simulation model is used as a platform for ge...
متن کاملDemand-oriented timetable design for urban rail transit under stochastic demand
In the context of public transportation system, improving the service quality and robustness through minimizing the average passengers waiting time is a real challenge. This study provides robust stochastic programming models for train timetabling problem in urban rail transit systems. The objective is minimization of the weighted summation of the expected cost of passenger waiting time, its va...
متن کاملA Bi-objective Stochastic Optimization Model for Humanitarian Relief Chain by Using Evolutionary Algorithms
Due to the increasing amount of natural disasters such as earthquakes and floods and unnatural disasters such as war and terrorist attacks, Humanitarian Relief Chain (HRC) is taken into consideration of most countries. Besides, this paper aims to contribute humanitarian relief chains under uncertainty. In this paper, we address a humanitarian logistics network design problem including local dis...
متن کامل